Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 399: 130611, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508282

RESUMO

Glucosylglycerate (R-2-O-α-D-glucopyranosyl-glycerate, GG) is a negatively charged compatible solution with versatile functions. Here, an artificial in vitro enzymatic cascade was designed to feasibly and sustainably produce GG from affordable starch and glycerol. First, Spirochaeta thermophila glucosylglycerate phosphorylase (GGP) was carefully selected because of its excellent heterologous expression, specific activity, and thermostability. The optimized two-enzyme cascade, consisting of alpha-glucan phosphorylase (αGP) and GGP, achieved a remarkable 81 % conversion rate from maltodextrin and D-glycerate. Scaling up this cascade resulted in a practical concentration of 58 g/L GG with a 62 % conversion rate based on the added D-glycerate. Additionally, the production of GG from inexpensive starch and glycerol in one-pot using artificial four-enzyme cascade was successfully implemented, which integrates alditol oxidase and catalase with αGP and GGP. Collectively, this sustainable enzymatic cascade demonstrates the feasibility of the practical synthesis of GG and has the potential to produce other glycosides using the phosphorylase-and-phosphorylase paradigm.


Assuntos
Glicerol , Amido , Glucosídeos/metabolismo , Fosforilases/metabolismo
2.
Int J Biol Macromol ; 260(Pt 2): 129641, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262552

RESUMO

Cellobionic acid (CBA), a kind of aldobionic acid, offers potential applications in the fields of pharmaceutical, cosmetic, food, and chemical industry. To tackle the high cost of the substrate cellobiose in CBA production using quinoprotein glucose dehydrogenase, this study developed a coenzyme-free and phosphate-balanced in vitro synthetic enzymatic biosystem (ivSEBS) to enable the sustainable CBA synthesis from cost-effective starch in one-pot via the CBA-synthesis module and gluconic acid-supply module. The metabolic fluxes of this artificial biosystem were strengthened using design-build-test-analysis strategy, which involved exquisite pathway design, meticulous enzyme selection, module validation and integration, and optimization of the key enzyme dosage. Under the optimized conditions, a remarkable concentration of 6.2 g/L CBA was achieved from initial 10 g/L maltodextrin with a starch-to-CBA molar conversion rate of 60 %. Taking into account that the biosystem simultaneously accumulated 3.6 g/L of gluconic acid, the maltodextrin utilization rate was calculated to be 93.3 %. Furthermore, a straightforward scaling-up process was performed to evaluate the industrial potential of this enzymatic biosystem, resulting in a yield of 21.2 g/L CBA from 50 g/L maltodextrin. This study presents an artificial ivSEBS for sustainable production of CBA from inexpensive starch, demonstrating an alternative paradigm for biomanufacturing of other aldobionic acids.


Assuntos
Gluconatos , Amido , Dissacarídeos/metabolismo
3.
Plant Physiol ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38096479

RESUMO

Stem cells are essential to plant growth and development. Through data mining, we identified five DEVIL-like (DVL) small peptide genes that are preferentially expressed in the quiescent center (QC) of Arabidopsis (Arabidopsis thaliana) root but whose functions are unknown. When overexpressed, these genes caused a dramatic decrease in root length and pleiotropic phenotypes in the shoot. No root growth defect was observed in the single gene mutants, but the quintuple mutant exhibited slightly longer roots than the wild type. Through transcriptome analysis with DVL20-overexpressing plants, we found that many genes involved in abscisic acid (ABA) signaling were regulated by these peptides. Consistent with this finding, we demonstrated that, relative to the wild type, DVL20-overexpressing plants were more tolerant whereas the quintuple mutant was more sensitive to ABA. Using RT-qPCR, we showed that ABA signaling-associated genes were affected in an opposite manner when the plants were grown in normal or ABA-containing medium. Strikingly, ectopic expression of ABA signaling genes such as PYRABACTIN RESISTANCE 1-LIKE (PYL) 4, 5 or 6 or suppression of HIGHLY ABA INDUCED 2 (HAI2) and MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE 18 (MAPKKK18) not only largely rescued the root growth defects in DVL20-overexpressing plants in normal growth condition but also conferred tolerance to ABA. Based on these results, we propose that DVL1, 2, 5, 8 and 20 function redundantly in root stem-cell maintenance under abiotic stress, and this role is achieved via ABA signaling.

4.
ACS Appl Mater Interfaces ; 15(28): 33288-33298, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37400422

RESUMO

Avoiding the low specificity of phototheranostic reagents at the tumor site is a major challenge in cancer phototherapy. Meanwhile, angiogenesis in the tumor is not only the premise of tumor occurrence but also the basis of tumor growth, invasion, and metastasis, making it an ideal strategy for tumor therapy. Herein, biomimetic cancer cell membrane-coated nanodrugs (mBPP NPs) have been prepared by integrating (i) homotypic cancer cell membranes for evading immune cell phagocytosis to increase drug accumulation, (ii) protocatechuic acid for tumor vascular targeting along with chemotherapy effect, and (iii) near-infrared phototherapeutic agent diketopyrrolopyrrole derivative for photodynamic/photothermal synergetic therapy. The mBPP NPs exhibit high biocompatibility, superb phototoxicity, excellent antiangiogenic ability, and double-trigging cancer cell apoptosis in vitro. More significantly, mBPP NPs could specifically bind to tumor cells and vasculature after intravenous injection, inducing fluorescence and photothermal imaging-guided tumor ablation without recurrence and side effects in vivo. The biomimetic mBPP NPs could cause drug accumulation at the tumor site, inhibit tumor neovascularization, and improve phototherapy efficiency, providing a novel avenue for cancer treatment.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Fotoquimioterapia , Humanos , Biomimética , Nanopartículas/uso terapêutico , Fototerapia , Neoplasias/patologia , Linhagem Celular Tumoral
5.
J Integr Plant Biol ; 64(8): 1543-1559, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35665443

RESUMO

To identify novel regulators of stem cell renewal, we mined an existing but little explored cell type-specific transcriptome dataset for the Arabidopsis root. A member of the TGA family of transcription factors, TGA8, was found to be specifically expressed in the quiescent center (QC). Mutation in TGA8 caused a subtle root growth phenotype, suggesting functional redundancy with other TGA members. Using a promoter::HGFP transgenic approach, we showed that all TGA factors were expressed in the root, albeit at different levels and with distinct spatial patterns. Mutant analyses revealed that all TGA factors examined contribute to root growth by promoting stem cell renewal, meristem activity, and cell elongation. Combining transcriptome analyses, histochemical assays, and physiological tests, we demonstrated that functional redundancy exists among members of clades II and V or those in clades I and III. These two groups of TGA factors act differently, however, as their mutants responded to oxidative stress differently and quantitative reverse transcription polymerase chain reaction assays showed they regulate different sets of genes that are involved in redox homeostasis. Our study has thus uncovered a previously unrecognized broad role and a mechanistic explanation for TGA factors in root growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Meristema/metabolismo , Oxirredução , Raízes de Plantas/metabolismo
6.
Front Microbiol ; 13: 839015, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464950

RESUMO

Gut microbiota plays an essential role in the development of rheumatoid arthritis (RA) and affects drug responses. However, the underlying mechanism remains elusive and urgent to elucidate to explore the pathology and clinical treatment of RA. Therefore, we selected methotrexate (MTX) as an example of RA drugs to explore the interactions between the gut microbiota and drug responses and obtain an in-depth understanding of their correlation from the perspective of the metabolic capability of gut microbiota on drug metabolism. We identified 2,654 proteins and the corresponding genes involved in MTX metabolism and then profiled their abundances in the gut microbiome datasets of four cohorts. We found that the gut microbiota harbored various genes involved in MTX metabolism in healthy individuals and RA patients. Interestingly, the number of genes involved in MTX metabolism was not significantly different between response (R) and non-response (NR) groups to MTX, but the gene composition in the microbial communities significantly differed between these two groups. Particularly, several models were built based on clinical information, as well as data on the gene, taxonomical, and functional biomarkers by using the random forest algorithm and then validated. Our findings provide bases for clinical management not only of RA but also other gut microbiome-related diseases. First, it suggests that the potential metabolic capability of gut microbiota on drug metabolism is important because they affect drug efficiency; as such, clinical treatment strategies should incorporate the gene compositions of gut microbial communities, in particular genes involved in drug metabolism. Second, a suitable model can be developed to determine hosts' responses to drugs before clinical treatment.

7.
Nat Commun ; 10(1): 560, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718489

RESUMO

Although Cas9 nucleases are remarkably diverse in microorganisms, the range of genomic sequences targetable by a CRISPR/Cas9 system is restricted by the requirement of a short protospacer adjacent motif (PAM) at the target site. Here, we generate a group of chimeric Cas9 (cCas9) variants by replacing the key region in the PAM interaction (PI) domain of Staphylococcus aureus Cas9 (SaCas9) with the corresponding region in a panel of SaCas9 orthologs. By using a functional assay at target sites with different nucleotide recombinations at PAM position 3-6, we identify several cCas9 variants with expanded recognition capability at NNVRRN, NNVACT, NNVATG, NNVATT, NNVGCT, NNVGTG, and NNVGTT PAM sequences. In summary, we provide a panel of cCas9 variants accessible up to 1/4 of all the possible genomic targets in mammalian cells.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/fisiologia , Evolução Biológica , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Citometria de Fluxo , Células HEK293 , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Especificidade por Substrato
8.
Int J Med Mushrooms ; 17(5): 435-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082982

RESUMO

This study aimed to improve polysaccharide production by engineering the biosynthetic pathway in Ganoderma lucidum through the overexpression of the homologous UDP glucose pyrophosphorylase (UGP) gene. The effects of UGP gene overexpression on intracellular polysaccharide (IPS) content, extracellular polysaccharide (EPS) production, and transcription levels of 3 genes encoding the enzymes involved in polysaccharide biosynthesis, including phosphoglucomutase (PGM), UGP, and α-1,3-glucan synthase (GLS), were investigated. The maximum IPS content and EPS production in G. lucidum overexpressing the UGP gene were 24.32 mg/100 mg dry weight and 1.66 g/L, respectively, which were higher by 42% and 36% than those of the wild-type strain. The transcription levels of PGM, UGP, and GLS were up-regulated by 1.6, 2.6, and 2.4-fold, respectively, in the engineered strain, suggesting that increased polysaccharide biosynthesis may result from a higher expression of those genes.


Assuntos
Polissacarídeos/biossíntese , Reishi/enzimologia , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Regulação Fúngica da Expressão Gênica , Medicina Tradicional , Filogenia , Reishi/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Regulação para Cima
9.
Int J Med Mushrooms ; 16(2): 161-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24941037

RESUMO

We report the construction of a plasmid, pJW-EXP, designed for the expression of homologous and heterologous genes in Ganoderma lucidum. pJW-EXP was generated from the plasmid pMD19-T by inserting the G. lucidum glyceraldehyde-3-phosphate dehydrogenase gene promoter, the G. lucidum iron-sulfur protein subunit of succinate dehydrogenase gene terminator and the homologous carboxin-resistance gene as selection marker. This expression plasmid can be efficiently transformed into Ganoderma through polyethylene glycol-mediated protoplast transformation. Southern blot analysis showed that most of the integrated DNA appeared as multiple copies in the genome. The applicability of the constructed plasmid was tested by expression of the truncated G. lucidum 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene that encodes the catalytic domain of HMGR. Overexpression of the truncated HMGR gene, which is a key gene in the biosynthetic pathway of the antitumor compounds, ganoderic acids, increased the transcription of the HMGR gene and enhanced ganoderic acid accumulation. pJW-EXP can serve as a useful tool in the genetic improvement and metabolic engineering of Ganoderma.


Assuntos
Expressão Gênica , Plasmídeos/genética , Reishi/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dosagem de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reishi/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...